20,219 research outputs found

    Analytical considerations of flow boiling heat transfer in metal-foam filled tubes

    Get PDF
    Flow boiling in metal-foam filled tube was analytically investigated based on a modified microstructure model, an original boiling heat transfer model and fin analysis for metal foams. Microstructure model of metal foams was established, by which fiber diameter and surface area density were precisely predicted. The heat transfer model for flow boiling in metal foams was based on annular pattern, in which two phase fluid was composed by vapor region in the center of the tube and liquid region near the wall. However, it was assumed that nucleate boiling performed only in the liquid region. Fin analysis and heat transfer network for metal foams were integrated to obtain the convective heat transfer coefficient at interface. The analytical solution was verified by its good agreement with experimental data. The parametric study on heat transfer coefficient and boiling mechanism was also carried out

    Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions

    Get PDF
    Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n2n and noncrossing partitions of [2n+1][2n+1] with n+1n+1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.Comment: 9 pages, 5 figures, revised version, to appear in Discrete Mathematic
    corecore